Kamis, 26 Juni 2014

Proyeksi Penduduk



IV.  PROYEKSI PENDUDUK

A.      Pengertian Proyeksi
Proyeksi secara umum adalah untuk mengetahui perkembangan di masa yang akan  Datang. berdasarkan data yang telah ada. Proyeksi pada dasarnya merupakan suatu perkiraan atau taksiran mengenai terjadinya suatu kejadian (nilai dari suatu variabel) untuk waktu yang akan datang. Hasil proyeksi menggambarkan tingkat kemampuan untuk masa yang akan datang, untuk menghindari atau mengurangi tingkatan resiko dari kesalahan, Maka diperlukan asumsi-asumsi yang dibuat oleh pihak pengambil keputusan, yang didukung oleh proyeksi tentang tingkat kemampuan populasi peternakan di masa depan secara objektif. Proyeksi penduduk bukan merupakan ramalan jumlah penduduk tetapi suatu perhitungan ilmiah yang didasarkan pada asumsi dari komponen-komponen laju pertumbuhan penduduk, yaitu kelahiran, kematian, dan perpindahan (migrasi).

B.       Kegunaan Proyeksi Penduduk

Pada masa dahulu, pemerintah tertarik pada population projection terutama untuk keperluan pajak atau keperluan mengetahui besarnya kekuatan negaranya.
Pada dekada akhir-akhir ini, pemerintah memerlukan proyeksi penduduk sehubungan dengan tanggung jawabnya untuk memperbaiki kondisi sosiol ekonomi dari rakyatnya melalui pembangunan yang terencana.
Mengingat semua rencana-rencana pembangunan, baik ekonomi maupun sosial, menyangkut pertimbangan tentang jumlah serta karekteristik dari pada penduduk dimasa mendatang, proyeksi mengenai jumlahserta struktur penduduk dianggap sebagai persyaratan minimum untuk proses perencanaan pembangunan:
1.      Di Bidang pangan : menentukan kebutuhan akan bahan pangan sesuai dengan gizi serta susunan penduduk menurut umur.
2.      Di bidang kesehatan : menentukan jumlah medis, dokter, obat-obatan tempat tidur di rumah sakit-rumah sakit yang diperlukan selama periode proyeksi.
3.      Di bidang Tenaga Kerja : menentukan jumlah angkatan kerja, penyediaan lapangan kerja yang erat hubunganya dengan proyeksi tentang kemungkinan perencanaan untuk memperhitungkan perubahan tingkat pendidikan, skilled dan pengalaman dari tenaga kerja.
4.      Di bidang Pendidikan : proyeksi penduduk dipakai sebagai dasar untuk memperkirakan jumlah penduduk usia sekolah, jumlah murid, jumlah guru gedung-gedung sekolah, pendidikan pada masa yang akan datang.
5.      Di bidang Produksi Barang dan Jasa : Dengan proyeksi angkatan kerja dalam hubunganya dengan data mengenai produktivitas merupakan dasar estimasi produksi barang-barang dan jasa dimasa mendatang


Jadi penggunaan proyeksi penduduk tersebut diatas dapat digunakan untuk 2 macam perencanaan :
1.      Perencanaan yang tujuannya untuk menyediakan jasa sebagai response terhadap penduduk yang sudah diproyeksi tersebut.
2.      Perencanaan yang tujuannya untuk merubah trend penduduk menuju ke perkembangan demografi sosial dan ekonomi.

C.      Metode Proyeksi

Ada beberapa cara untuk memproyeksikan jumlah penduduk masa yang akan datang antara lain:
1. Metode Matematik, ada 2 cara, yaitu:
Linear Rate of Growth, ada 2 cara yaitu:
  1. Arithmathic Rate of Growth: Pn= P0(1+rn).
  2. Geometric Rate of Growth: Pn=P0 (1+r)n.

Eksponential Rate of Growth: Pn= P0 ern

Dimana P0 : jumlah penduduk pada tahun awal
Pn : jumlah penduduk pada tahun ke-n
r : tingkat pertumbuhan penduduk dari tahun awal ke tahun ke-n.
n : banyak perubahan tahun.

2. Metode Komponen
Metode ini sering digunakan dalam penghitungan proyeksi penduduk. Metode ini melakukan tiap komponen penduduk secara terpisah dan untuk mendapat proyeksi jumlah penduduk total, hasil proyeksi tiap komponen digabungkan. Metode ini membutuhkan data-data sebagai berikut:
Ø  Komposisi penduduk menurut umur dan jenis kelamin yang telah dilakukan
Ø  perapihan (smothing).
Ø  Pola mortalitas menurut umur.
Ø  Pola fertilitas menurut umur.
Ø  Rasio jenis kelamin saat lahir.
Ø  Proporsi migrasi menurut umur.


D.      Tahap- tahap Proyeksi

a. Evaluasi Data
Umur; pelaporan umur tidak benar, cenderung umur mengelompok pada angka yang berakhiran “0” dan “5”.
Jenis Kelamin: Rasio jenis kelamin berfluktuasi diakibatkan mobilits laki-laki lebih tinggi pada usia muda sehingga banyak terlewat cacah.

b. Perapihan Umur
Prorata (pro-rate), mengalokasikan TT (tidak terjawab) ke masing-masing kelompok umur.
Perapihan (adjusment) penduduk 10-64 dengan rumus:

Perapihan (adjusment) penduduk 65+ tahun, dengan table stable population karena dianggap pengaruhnya tidak besar (mendekati “0”)
Perapihan (adjustment) penduduk 0-4 tahun dan 5-9 tahun dengan menggunakan survival ratio.

E.       Jenis perkiraan penduduk

Ada pun jenis-jenis perkiraan penduduk yaitu :
1.      Intercensal disebut pula interpolasi adalah suatu perkiraan mengenai
keadaan penduduk diantara 2 sensus yang kita ketahui, jadi hasil kedua sensus diperhitung kan.

Rumus:
Pm  = Po+

Pm =Pn
Di mana:
Po        = jumlah penduduk pada tahun n
Pn        = jumlah penduduk pada tahun ( penduduk dasar ) awal
Pm       = jumlah penduduk pada tahun yang diestimasikan ( tahun M )
m         = selisih tahun yang dicari dengan tahun awal
n          = selisih tahun dari 2 sensus yang diketahui



4
2.      Postecensal estimated
Adalah perkiraan mengenai penduduk seseudah census. Prinsipnya juga sama, yaitu pertambahan penduduk adalah linear.

Rumus:
Pm       = Po –  (Pn-Po)
Pm       = Pn +
Dimana:
Po        = jumlah penduduk dasar (tahun awal)
Pn        = jumlah penduduk pada tahun n
Pm       = jumlah penduduk pada tahun yang diestimasikan (tahun m)
m         = selisih tahun yang dicari dengan tahun n
n          = selisih tahun dari 2 sensus yang diketahui

3.      Projection
Perkiraan pendudukan berdasarkan sensus (biasanya sensus terakhir).Disini perkirakan penduduk tidak hanya beberapa tahun sesudah sensus tetapi mungkin sampai beberapa puluh tahun sesudah sensus.
Proyeksi penduduk menurut Multilingual Demographic Dictionary adalah:
Perhitungan yang menunjukan keadaan fertilitas, mortalitas dan migrasi dimasa yang akan datang. Jadi proyeksi pendudukan menggunakan beberapa asumsi-asumsi sehungga jumlah penduduk yang akan datang adalah x kalau fertilitas, mortalitas dan migrasi berapa pada tingkat tertentu.



5

Proyeksi dapat dilakukan :
Sesudah sensus disebut forward projection
Sebelum sensus disebut backward projection
Selanjutnya perlu dibedakan antara proyeksi, forecast dan estimate.
Proyeksi adalah perhitungan yang menunjukan keadaan fertilitas, mortalitas dan migrasi dimasa yang akan datang.
Forecast adalah suatu proyeksi dimana asumsi yang dibuat diusahakan sedemikian rupa sehingga menghasilkan suatu gambaran yang realistis mengenai kemungkinan perkembangan pendudukan dimasa mendatang.
Estimate adalah suatu perkiraan berdasarkan ketentuan dan rumus-rumus sederhana.

F.       Model Ektrapolasi Trend
Model ekstrapolasi trend secara sederhana menggunakan trend penduduk masa yang  lalu untuk memperkirakan jumlah penduduk masa yang akan datang. Metode ini adalah metode yang mudah digunakan dalam rangka proyeksi penduduk. Selain itu, metode ini juga digunakan untuk menghitung tingkat dan ratio pada masa yang akan datang berdasarkan tingkat dan ratio pada masa yang lalu.
Model ekstrapolasi trend yang banyak digunakan adalah model linear, geometric dan
parabolic. Asumsi dasar dari model linear, geometric dan parabolik adalahpertumbuhan atau penurunan akan berlanjut tanpa batas. Namun demikian, asumsi tersebut tidak mungkin diberlakukan jika proyeksi yang disusun adalah proyeksi jangka panjang. Misalnya jika populasi di suatu daerah berkurang, dalam jangka panjang model ini akan memproyeksikan penduduk menjadi nol, dan bahkan menjadi negative. Demikian juga, jika jumlah penduduk di suatu daerah yang meningkat, tidak mungkin akan meningkat pada jumlah yang tanpa batas. Dalam kenyataannya, penduduk hanya akan meningkat sampai suatu tingkat dengan kapasitas yang maksimum dan kemudian akan kembali turun atau stabil dalam kaitannya dengan kepadatan penduduk, biaya hidup dan kualitas hidup. Oleh karenanya, penggunaan model ekstrapolasi trend membutuhkan pemahaman yang baik tentang kecenderungan pertumbuhan masa lalu untuk membuat estimasi dengan batasan yang masuk akal (reasonable).

G.      Model Linear (Aritmethic)
Model linear menurut Klosterman (1990) adalah teknik proyeksi yang paling
sederhana dari seluruh model trend. Model ini menggunakan persamaan
derajat pertama (first degree equation). Berdasarkan hal tersebut, penduduk
diproyeksikan sebagai fungsi dari waktu, dengan persamaan:
Pt =α + βT
Dimana :     Pt = penduduk pada tahun proyeksi t
α = intercept = penduduk pada tahun dasar
β = koefisien = rata-rata pertambahan penduduk
T = periode waktu proyeksi = selisih tahun proyeksi dengan tahun dasar

Hasil proyeksi akan berbentuk suatu garis lurus. Model ini berasumsi bahwa
penduduk akan bertambah/berkurang sebesar jumlah absolute yang sama/tetap
(β) pada masa yang akan datang sesuai dengan kecenderungan yang terjadi
pada masa lalu. Ini berarti bahwa, jika Pt+1 dan Pt adalah jumlah populasi
dalam tahun yang berurutan, Pt+1 – Pt yang adalah perbedaan pertama yang
selalu tetap (konstan). Klosterman (1990), mengacu pada Pittengar (1976),
mengemukakan bahwa model ini hanya digunakan jika data yang tersedia
relatif terbatas, sehingga tidak memungkinkan untuk menggunakan model
lain. Selanjutnya, Isserman (1977) mengemukakan bahwa model ini hanya
dapat diaplikasikan untuk wilayah kecil dengan pertumbuhan yang lambat,
dan tidak tepat untuk proyeksi pada wilayah-wilayah yang lebih luas dengan
pertumbuhan penduduk yang tinggi.

H.      Model Geometric
Asumsi dalam model ini adalah penduduk akan bertambah/berkurang pada
suatu tingkat pertumbuhan (persentase) yang tetap. Misalnya, jika Pt+1 dan Pt
adalah jumlah penduduk dalam tahun yang berurutan, maka penduduk akan
bertambah atau berkurang pada tingkat pertumbuhan yang tetap (yaitu sebesar
Pt+1/Pt ) dari waktu ke waktu. Menurut Klosterman (1990), proyeksi dengan
tingkat pertumbuhan yang tetap ini umumnya dapat diterapkan pada wilayah,
dimana pada tahun-tahun awal observasi pertambahan absolut penduduknya
sedikit dan menjadi semakin banyak pada tahun-tahun akhir. Model geometric
memiliki persamaan umum:
Pt =α + βT
Persamaan diatas dapat ditransformasi kedalam bentuk linear melalui aplikasi
logaritma, menjadi sebagai berikut:
LogPt =Logα + T.logβ

I.         Model Parabolik
Model parabolic seperti model geometric berasumsi bahwa penduduk suatu daerah tidak tumbuh dalam bentuk linear. Namun demikian, tidak seperti model geometrik (yang berasumsi tingkat pertumbuhan konstan dari waktu ke waktu), pada model parabolic tingkat pertumbuhan penduduk dimungkinkan untuk meningkat atau menurun. Model ini menggunakan persamaan derajat kedua yang ditunjukkan sebagai berikut:
Pt =α + β1T + β2T2
Model parabolic memiliki dua koefisien yaitu β1 dan β2. β1 adalah koefisien linear (T) yang menunjukkan pertumbuhan konstan, dan β2 adalah koefisien non-linear yang (T2) yang menyebabkan perubahan tingkat pertumbuhan. Tanda positif atau negatif pada β1 dan β2 bervariasi tergantung pada apakah tingkat pertumbuhan tersebut akan meningkat atau menurun.
Klosterman (1990), menyarankan demographer untuk terlebih dahulu mencermati (menguji coba) model ini ketika akan diaplikasikan pada suatu daerah. Menurutnya, meskipun model ini baik untuk daerah dengan pertumbuhan atau penurunan yang cepat, namun demikian proyeksi jangka panjang akan menghasilkan angka yang sangat besar atau sangat kecil.

J.        Model Komponen Kohor
Model-model ekstrapolasi trend yang didiskusikan diatas mengacu pada perkiraan penduduk secara agregat, sementara model komponen kohor mengacu pada perubahan-perubahan komponen penduduk (yaitu fertilitas, mortalitas dan migrasi) secara terpisah. Penduduk secara keseluruhan dibagi kedalam beberapa kohor/kelompok umur. Interval (k) dari kohor ini umumnya dalam satu tahunan (0-1, 1-2, 2-3 dst), lima tahunan (0-4, 5-9, 10-14 dst), atau 10 tahunan (0-9, 10-19, 20-29. Selanjutnya, kohor dibagi lagi berdasarkan gender dan etnis.
Pengelompokan penduduk berdasarkan komponen-komponen yang mempengaruhi perubahan penduduk, kelompok umur, gender dan etnis akan membantu untuk membangun pemahaman yang lebih baik mengenai dinamika penduduk suatu daerah. Karena ukuran kohor semakin kecil, maka akan semakin terperinci informasi yang dapat digunakan dalam analisis. Misalnya, bayi dan penduduk umur-umur tua akan memiliki persentase kematian yang lebih tinggi dibandingkan penduduk usia muda. Jumlah kelahiran akan bervariasi berdasarkan umur dan etnis dari penduduk wanita. Demikian juga, migrasi akan bervariasi menurut umur, gender dan etnis individu.
Persamaan dalam model komponen kohor adalah:



Dimana:
Pt         = penduduk tahun t pada kohor di interval k
t           = tahun
n          = umur awal dari kohor
k          = jumlah tahun dalam kohor (interval kohor umur)
DTH    = total kematian
IR        = total kelahiran
NMIG = total migrasi bersih
Karena penduduk kohor n pada tahun sebelumnya ( ) dikurangi dengan jumlah kematian dalam kohor tersebut ( ) adalah jumlah penduduk yang bertahan hidup ke kohor n pada tahun t ( ), maka persamaan dapat ditulis ulang sebagai berikut:

Berikut diberikan perhitungan-perhitungan untuk ketiga komponen dalam metode ini:

K.      Mortalitas-Tingkat Survival
Mortalitas dihitung dalam model sebagai jumlah penduduk dalam kohor tertentu n-k pada tahun t-k, yang bertahan hidup ke kohor berikutnya (n) pada tahun t.

Dimana:
penduduk dari kohor n-k pada tahun t-k
n-kSRVk     = tingkat bertahan hidup (survival)

L.       Kelahiran- Tingkat Fertilitas
Fertilitas adalah jumlah bayi yang dilahirkan wanita usia subur (biasanya antara 15-44 tahun). Tingkat fertilitas diberikan melalui persamaan berikut:

Dimana:
tingkat fertilitas wanita dalam kohor n dari interval k
jumlah kelahiran oleh wanita pada kohor n
jumlah wanita dalam kohor n
Tingkat fertilitas yang diperoleh dari rumus diatas dapat digunakan untuk menghitung jumlah kelahiran dalam interval waktu yang sama sesuai dengan ukuran kohor. Misalnya, jika ukuran kohor adalah lima tahunan (0-4, 5-9, 10-14), maka proyeksi dapat dilakukan untuk interval lima tahunan (2005, 2010, 2015).
Selanjutnya, jika wanita-wanita pada kohor umur tertentu tidak memiliki kelahiran, maka untuk keakuratan perhitungan, tingkat fertilitas perlu disesuaikan. Tingkat fertilitas yang disesuaikan adalah rata-rata dari dua tingkat fertilitas yang berurutan.


Dimana:
tingkat fertilitas yang disesuaikan dari wanita dalam kohor n dengan interval k
Total kelahiran selanjutnya dibagi atas kelahiran bayi laki-laki dan bayi perempuan berdasarkan sex ratio waktu lahir dari data masa yang lalu.

M.     Migrasi bersih (Net Migration).
Migrasi bersih adalah perbedaan antara jumlah penduduk yang masuk dengan jumlah penduduk yang keluar dari suatu daerah, dengan persamaan:

N.      Model Ratio
Menurut Smith, Tayman dan Swanson (2001), model ratio-sebagaimana model ekstrapolasi trend- juga didasarkan pada trend masa lalu. Model ratio menggunakan konsep bahwa penduduk (atau perubahan penduduk) pada suatu wilayah yang lebih kecil (wilayah studi) merupakan proporsi dari penduduk (perubahan penduduk) dari wilayah yang lebih luas, atau wilayah basis (base area). Model ini sederhana dan mudah dalam perhitungannya serta membutuhkan data yang relative lebih sedikit. Meskipun demikian, model ini membutuhkan proyeksi penduduk dari wilayah basis tersebut.
Model ratio mencakup model constant share, shift share dan model share of growth.

O.      Model Constant Share
Model ini berasumsi bahwa share penduduk dari daerah studi merupakan suatu proporsi yang konstan dari daerah basis dan proyeksi dilakukan berdasarkan proporsi konstan tersebut.
Model disajikan dalam bentuk persamaan berikut:

Dimana:
P          =  jumlah penduduk pada daerah studi
Pj            = penduduk pada daerah basis atau daerah yang lebih luas yang didalamnya terdapat daerah studi
l           = tahun akhir dari observasi
t           = tahun proyeksi
Jika data wilayah studi menunjukkan kecenderungan yang sama seperti wilayah basis, penggunaan model ini akan menghemat waktu dan lebih sederhana dalam penerapannya. Namun demikian, jika daerah studi dan daerah basis memiliki trend pertumbuhan yang berlawanan, artinya jika daerah studi mengalami penurunan penduduk dan daerah basis mengalami peningkatan penduduk, atau sebaliknya, proyeksi ini tidak dapat diaplikasikan

P.       Model Shift Share
Model shift share mencoba mengoreksi kelemahan dari model constant share dengan memasukkan indeks pergeseran (shift term) untuk menghitung perubahan share penduduk dari waktu ke waktu. Jika pertumbuhan daerah studi lebih cepat dari daerah basis maka shift term akan positif. Sebaliknya jika pertumbuhan daerah studi lebih lambat dari daerah basis, maka shift termnya akan negative.
Persamaan dalam metode ini adalah sebagai berikut:


Dimana:
b          = tahun awal observasi
s           = shift term
z          = jumlah tahun dalam proyeksi (t-1)
y          = jumlah tahun dalam periode observasi (1-b)

Satu kelemahan utama dari metode ini adalah jika terjadi pertumbuhan atau pengurangan yang tinggi pada tahun dasar, hal ini dapat menyebabkan bertambahnya atau berkurangnya penduduk dalam jumlah yang sangat besar pada tahun proyeksi. Oleh karenanya, penggunaan metode ini untuk proyeksi penduduk jangka panjang harus dilakukan secara hati-hati.

Q.      Metode “share of growth”
Metode ini menggunakan share dari pertumbuhan penduduk bukannya share dari jumlah penduduk seperti yang digunakan dua model ratio sebelumnya. Asumsi dasar dari model ini adalah bahwa share pertumbuhan penduduk daerah studi pada periode observasi akan berlaku sama dalam periode proyeksi.
Model ini disajikan dalam bentuk persamaan berikut:

Metode ini akan lebih tepat diterapkan jika trend pertumbuhan penduduk pada daerah studi sama dengan trend pertumbuhan pada daerah basis. Misalnya jika pertumbuhan penduduknya sama-sama meningkat atau sama-sama menurun.


Sumber dan data metodologi
1.      Proyeksi penduduk menurut propinsi, umur, dan jenis kelamin dihitung dengan tehnik komponen. Jenis data yang dibutuhkan untuk keperluan ini adalah penduduk menurut umur dan jenis kelamin, fertilitas, mortalitas, dan perpindahan penduduk, yang diperoleh dari hasil sensus penduduk dan survei rumah tangga. Semua data yang dipakai perlu dievaluasi secara cermat, dan kalau perlu diadakan adjustment dengan maksud untuk menghapus kelemahan yang ditemukan.
2.      Proyeksi penduduk menurut kotamadya yang disajikan di sini tidak dapat dilakukan dengan teknik komponen seperti diuraikan di atas, karena data untuk keperluan itu yakni fertilitas, mortalitas, dan perpindahan penduduk tidak dapat diperoleh dari hasil sensus. Di negara-negara maju, data ini diperoleh dari hasil registrasi vital yang diadakan secara berkesinambungan pada setiap wilayah administrasi.
3.      Proyeksi penduduk dihitung dengan menggunakan laju pertumbuhan penduduk hasil sensus yang terdahulu, dengan asumsi bahwa laju pertumbuhan penduduk tersebut juga berlaku pada masa yang akan datang. Tehnik ini kurang tepat diterapkan untuk menghitung proyeksi yang jangka waktunya cukup panjang pada masa yang akan datang, karena asumsi yang dipakai biasanya tidak sesuai lagi.

Perbaikan proyeksi selalu dilakukan, karena sering terjadi asumsi-asumsi yang dibuat mengenai fertilitas (fertility), mortalitas (mortality), dan migrasi (migration) tidak sesuai lagi dengan keadaan data yang baru.





Sumber :

Barclay, George W., Techniques of Population Analysis, New York: John Wiley & Sons, 1970.

Gavin W.Jones, “What Do Know About the Labour Force in Indonesia”. Department of Commerce Bureau of the Census 1974 hal 11.

Shryock and Siegel,The Metods and Materials of Demografhy, Vol. 2, U.S. Department of Commerce Bureau of the Census 1971.

Sinha UP, Complete Life Table Based on Coale and Demeny Model (West) Life Table, Bombai,1972.

United Nations,  Methods for Population Projection by Sex and Age . Manual III. Population Studies No. 25 U.N Department of Econimic and Social . Affairs New York, 1952.

United Nations, Methods of Projection the Economically Active Population. Manual IV. Population Studies, No. 46 U.N Department of Economic and Sosial Affairs New York, 1971.

Wardiyatmoko.k  2006.Geografi untuk SMA kelas IX. Erlangga. Jakarta.

1 komentar:

  1. Strange "water hack" burns 2lbs overnight

    At least 160000 men and women are utilizing a easy and secret "liquids hack" to burn 1-2 lbs each night in their sleep.

    It is effective and it works every time.

    This is how you can do it yourself:

    1) Go get a clear glass and fill it up with water half full

    2) Then use this awesome HACK

    and become 1-2 lbs thinner as soon as tomorrow!

    BalasHapus

turun lapang

turun lapang

turun lapang

turun lapang
Diberdayakan oleh Blogger.